Adaptive control of nonlinear multivariable systems using neural networks

نویسندگان

  • Kumpati S. Narendra
  • Snehasis Mukhopadhyay
چکیده

This paper considers the problem of using approximate methods for realizing the neural controllers for nonlinear multivariable systems. In [1] the NARMA-L1 and NARMA-L2 models were introduced as approximations of he NARMA model used for the representation of a SISO nonlinear dynamical systems. The advantage obtained from using NARMA-L1 and NARMA-L2 models is that control input u(k) occurs linearly and then it can be computed directly from the identification model. In contrast to the NARMA model that is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input and the training process involves dynamic gradient methods which are computationally intensive. In this paper, we take the two SISO approximate models NARMA-L1 and NARMA-L2 and extend them to be in agreement with the multivariable systems. The two new extended models are called NARMA-L3 and NARMA-L4. These two new models simplify both identification and control of the multivariable systems. In this paper we concern with the case when the system is unknown and the control has to be generated using only the values of the input and output. Simulation results are included toward the end of the paper to complement the study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Stabilization of Nonlinear Control Systems through Using Zobov’s Theorem and Neural Networks

Zobov’s Theorem is one of the theorems which indicate the conditions for the stability of a nonlinear system with specific attraction region. We have applied neural networks to approximate some functions mentioned in Zobov’s theorem in order to find the controller of a nonlinear controlled system whose law in a mathematical manner is difficult to make. Finally, the effectiveness and the applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural Networks

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1994